Abstract

The behavior of fully-suspended slurry flow in horizontal pipeline can be simulated through two very distinct models, the Computational Fluid Dynamics (CFD) model and the Delft Head Loss & Limit Deposit Velocity (DHLLDV) model. The predicted results from simulations are compared with a series of experiment data from the literature, involving the effects of different particles volume concentration (9–42%), particle size (90–440 μm), mixture velocity (1–9 m/s), and pipe diameter (51.5–263 mm) on hydraulic gradient and particles concentration distribution, and revealing excellent agreements between two model predictions and the experimental data. Both CFD and DHLLDV, however, still have some deviations in the near-wall concentration distribution as for larger particles. Though it is observed that the accuracy for CFD will decline when particle size increases and further research is needed for improving the accuracy of the models for the near-wall flow of larger particles, it can be concluded that both CFD model and DHLLDV model apply to calculations for fully-suspended flow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.