Abstract

It is well established that producing sustainable fuels and replacing the fossil-based ones is one of the key solutions to achieving net-zero emissions goals. One of the most advanced commercial-scale pathways to biofuels available today is fast pyrolysis. However, due to the need for a supportive regulatory environment and mitigation strategies for uncertainties related to costs and feedstock quality, fast pyrolysis is not yet being widely implemented. In this case study, three fast pyrolysis technologies with a technology readiness level (TRL) of 6 and above have been compared to distinguish between them and identify the conditions under which they are economically viable. The circulating fluidized bed (CFB), rotating cone (RC), and mechanically assisted fluidized bed (MFB) fast pyrolysis technologies were considered. First, the flow diagram and a mass and energy balance comparison were addressed. It was revealed that the RC configuration has better bio-oil yields because it can handle smaller particles. The MFB configuration has a progressive condensation unit at the end of the process, which produces a nearly dry oil having a higher energy content. Four implementation scenarios were studied. The first was the fast pyrolysis standalone process, where all options had marginal economic attractiveness, and the RC configuration economically outperformed the other two. Integration of a fast pyrolysis plant into a sawmill in the second scenario was found to bring significant improvements in revenues and internal rate of return (IRR). Realization of the full value of bio-oil (the third scenario) brought significantly more revenues for the MFB. Finally, the fourth scenario involved adding a progressive condensation unit, which increased the capital expenditure (CAPEX) by 3%–4% while increasing revenues by 32%–35%. A sensitivity analysis highlighted the importance of financial support towards capital cost and the full valuation of bio-oil for the economic viability of fast pyrolysis processes. Progressive condensation leading to more added-value bio-oil makes the standalone fast pyrolysis process more profitable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call