Abstract

Anubias Schott (Araceae) have high ornamental properties as aquarium plants. However, the genus has difficulties in species identification, and the mechanism of its adaptation to the aquatic environment is unknown. To better identify species and understand the evolutionary history of Anubias, the plastomes of Anubias barteri Schott, A. barteri var. nana (Engl.) Crusio, and A. hastifolia Engl., were sequenced. The sizes of the plastomes of Anubias ranged from 169,841 bp to 170,037 bp. These plastomes were composed of conserved quadripartite circular structures and comprised 112 unique genes, including 78 protein-coding genes, 30 transfer RNA genes, and 4 ribosomal RNA genes. The comparative analysis of genome structure, repeat sequences, codon usage and RNA editing sites revealed high similarities among the Anubias plastomes, indicating the conservation of plastomes of Anubias. Three spacer regions with relatively high nucleotide diversity, trnL-CAA-ndhB, ycf1-ndhF, and rps15-ycf1, were found within the plastomes of Anubias. Phylogenetic analysis, based on 75 protein-coding genes, showed that Anubias was sister to Montrichardia arborescens (L.) Schott (BS = 99). In addition, four genes (ccsA, matK, ndhF, and ycf4) that contain sites undergoing positive selection were identified within the Anubias plastomes. These genes may play an important role in the adaptation of Anubias to the aquatic environment. The present study provides a valuable resource for further studies on species identification and the evolutionary history of Anubias.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call