Abstract
A proprietary adsorbent material called Nyex 1000 was developed by the Arvia Technology Ltd. (UK based waste water treatment company). Nyex 1000 was being employed for a number of commercial applications dealing with the removal of organic contaminants from industrial effluents. This adsorbent material had small adsorptive capacity. With the aim to address small adsorptive capacity, a new graphite based adsorbent material was developed. The particle design was accomplished through successive chemical, thermal and mechanical treatments of raw graphite material (natural large flake graphite, to be called here as NLFG). The chemical treatment of the NLFG was carried out through electrochemical intercalation using dilute (50%) sulfuric acid in an electrochemical cell. Chemically treated NLFG then went through thermal treatment at 850°C and followed by mechanical treatments consisting of compression (4536kgfcm−2) and chopping at 18,000rpm for 30s. The developed adsorbent material, (exfoliated compacted graphite, to be called here as ECG) and NLFG were characterized using state of the art techniques including SEM, BET surface area, XRD, Zeta potential, Boehm surface titration, bed electrical conductivity and laser size analysis. The characterization results showed significant increase in internal specific surface area from 1 to 17m2g−1. It was attributed to the development of partially porous particle surface verified by SEM results. The XRD, Boehm surface titration, Zeta potential results endorsed the associated chemical and physical changes appeared in the composition of the NLFG as a result of chemical, thermal and mechanical treatments. Adsorption-regeneration studies were conducted using developed ECG and existing Nyex 1000 materials. The pollutants used for adsorption–regeneration studies were acid violet 17, phenol, humic acid, ethane thiol and methyl propane thiol dissolved in aqueous solution. The results were compared and it was found that ECG showed significantly improved adsorption capacity with many folds. Both adsorbent materials, ECG and Nyex 1000 delivered 100% electrochemical regeneration efficiencies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.