Abstract

The emergence of SARS-CoV-2 has caused over a million human deaths and massive global disruption. The viral infection may also represent a threat to our closest living relatives, nonhuman primates. The contact surface of the host cell receptor, ACE2, displays amino acid residues that are critical for virus recognition, and variations at these critical residues modulate infection susceptibility. Infection studies have shown that some primate species develop COVID-19-like symptoms; however, the susceptibility of most primates is unknown. Here, we show that all apes and African and Asian monkeys (catarrhines), exhibit the same set of twelve key amino acid residues as human ACE2. Monkeys in the Americas, and some tarsiers, lemurs and lorisoids, differ at critical contact residues, and protein modeling predicts that these differences should greatly reduce SARS-CoV-2 binding affinity. Other lemurs are predicted to be closer to catarrhines in their susceptibility. Our study suggests that apes and African and Asian monkeys, and some lemurs, are likely to be highly susceptible to SARS-CoV-2. Urgent actions have been undertaken to limit the exposure of great apes to humans, and similar efforts may be necessary for many other primate species.

Highlights

  • The emergence of SARS-CoV-2 has caused over a million human deaths and massive global disruption

  • Infection studies of rhesus monkeys, long-tailed macaques, and vervets as biomedical models have made it clear that at least some nonhuman primate species are permissive to SARS-CoV-2 infection and develop symptoms in response to infection that resemble those of humans following the development of COVID-19, including similar age-related effects[11,12,13,14,15,16]

  • The twelve sites in the angiotensin‐converting enzyme‐2 (ACE2) protein that are critical for binding of the SARS-CoV-2 virus are invariant across the Catarrhini, which includes great apes, gibbons, and monkeys of Africa and Asia (Fig. 1)

Read more

Summary

Introduction

The emergence of SARS-CoV-2 has caused over a million human deaths and massive global disruption. Transmission incidences of bacteria and viruses—including another coronavirus (H-CoVOC43)—from humans to wild populations of nonhuman primates have previously been linked to outbreaks of Ebola, yellow fever, and fatal respiratory diseases, leading in some cases to mass mortality[3,4,5,6,7,8,9]. Such past events raise considerable concerns among the global conservation community with respect to the impact of the current pandemic[10]. ACE2 is made up of a signal sequence at the N terminus (residues 1–17), a transmembrane sequence at the C terminus (residues 741–762), and an extracellular region, which contains a zinc metallopeptidase domain (residues 19–611) and a collectrin homolog (residues 612–740)[23,24]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.