Abstract

AbstractImproving the potency of immune responses is paramount among issues concerning vaccines against deadly pathogens. IL-28B belongs to the newly described interferon lambda (IFNλ) family of cytokines, and has not yet been assessed for its potential ability to influence adaptive immune responses or act as a vaccine adjuvant. We compared the ability of plasmid-encoded IL-28B to boost immune responses to a multiclade consensus HIV Gag plasmid during DNA vaccination with that of IL-12. We show here that IL-28B, like IL-12, is capable of robustly enhancing adaptive immunity. Moreover, we describe for the first time how IL-28B reduces regulatory T-cell populations during DNA vaccination, whereas IL-12 increases this cellular subset. We also show that IL-28B, unlike IL-12, is able to increase the percentage of splenic CD8+ T cells in vaccinated animals, and that these cells are more granular and have higher antigen-specific cytolytic degranulation compared with cells taken from animals that received IL-12 as an adjuvant. Lastly, we report that IL-28B can induce 100% protection from mortality after a lethal influenza challenge. These data suggest that IL-28B is a strong candidate for further studies of vaccine or immunotherapy protocols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call