Abstract
We present a novel comparative method for the ab initio prediction of protein coding genes in eukaryotic genomes. The method simultaneously predicts the gene structures of two un-annotated input DNA sequences which are homologous to each other and retrieves the subsequences which are conserved between the two DNA sequences. It is capable of predicting partial, complete and multiple genes and can align pairs of genes which differ by events of exon-fusion or exon-splitting. The method employs a probabilistic pair hidden Markov model. We generate annotations using our model with two different algorithms: the Viterbi algorithm in its linear memory implementation and a new heuristic algorithm, called the stepping stone, for which both memory and time requirements scale linearly with the sequence length. We have implemented the model in a computer program called DOUBLESCAN. In this article, we introduce the method and confirm the validity of the approach on a test set of 80 pairs of orthologous DNA sequences from mouse and human. More information can be found at: http://www.sanger.ac.uk/Software/analysis/doublescan/
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.