Abstract
Rat astroglial cells in primary culture (95% enrichment) and C6 glioma cells were adapted to grow on microcarrier beads. In vivo 31P NMR spectra were collected from cell-covered beads perfused in the NMR tube. The NMR-visible phosphorylated metabolite contents of both cell types were determined using saturation factors calculated from the values of longitudinal relaxation times determined for C6 cells using progressive saturation experiments. On the other hand, the amounts of phosphorylated metabolites in cells were determined from proton decoupled 31P NMR spectra of cell perchloric acid extracts. The results indicate that the NTP and Pi contents of the normal and tumoral cells were similar, whereas the PCr level was higher in C6 cells and the NDP and phosphomonoester levels higher in astrocytes. The comparison of 1H NMR spectra of cell perchloric acid extracts evidenced larger inositol and alanine contents in C6 cells, whereas larger taurine and choline (and choline derivatives) contents were found in astrocytes. The Glu/Gln ratio was very different, 3.5 and 1 in C6 cells and astrocytes, respectively. In both cases, the more intense resonance in the 1H NMR spectrum was assigned to glycine. Based on the comparison of the metabolite content of a tumoral and a normal cell of glial origin, this work emphasizes the usefulness of a multinuclear NMR study in characterizing intrinsic differences between normal and tumoral cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.