Abstract

The objective of this study was to compare several methods of estimating the availability of soil nitrogen to plants. Total soil N, organic matter content, mineralized N during a 2 wk incubation at 35 °C, organic N in 6 N HC1, 0.01 M NaHCO3 and 1 N KCl extracts, and finally mineral N extracted by 2 N KCl were evaluated and contrasted with N uptake by sugar beets cultivated on 19 soils in a greenhouse experiment. The relative yield or plant N uptake gave the highest correlation coefficients when both mineral and organic N fractions in soil extract were considered. The incubation methods gave the best correlation coefficient with relative yield (R2 = 0.85**). N contents in NaHCO3 extract were more correlated with relative yield or N uptake than total N, organic matter contents or N extracted by 6 N HCl or 1 N KCl. The UV absorbance values obtained at 205 nm with 0.01 M NaHCO3 extract were also well correlated with relative yield (R2 = 0.78**) and plant N uptake (R2 = 0.66**). At this wavelength, as well as at 220 nm, the absorbance was affected by mineral and organic N contents in the extract. However, at 260 nm, the UV absorbance was only related to organic N in the extract; consequently these absorbance values were less correlated with relative yield (R2 = 0.49**) or N uptake (R2 = 0.27*). Furthermore, the absorbance measured at 205 nm was too sensitive to NO3-N and organic N concentration and this relationship was not linear in the high-N concentration range. The UV absorbance at 220 nm in the 0.01M NaHCO3 extract seemed to be a promising method to evaluate the availability of soil N. Key words: Soil nitrogen, incubation, ultraviolet absorbance, hydrolyzable nitrogen

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.