Abstract

Cardiovascular diseases (CVDs) remain the leading cause of morbidity worldwide. The heart sound signal or phonocardiogram (PCG) is the most simple, low-cost, and effective tool to assist physicians in diagnosing CVDs. Advances in signal processing and machine learning have motivated the design of computer-aided systems for heart illness detection based only on the PCG. The objective of this work is to compare the effects of using spectral and sparse features for a classification scheme to detect the presence/absence of a pathological state in a heart sound signal, more specifically, sparse representations using Matching Pursuit with multiscale Gabor time-frequency dictionaries, linear prediction coding, and Mel-frequency cepstral coefficients. This work compares the performance of PCGs classification applying features as a result of averaging the samples or the features for each PCG sound event when feeding a random forest (RF) classifier. For data balancing, random under-sampling and synthetic minority oversampling (SMOTE) methods were applied. Furthermore, we compare the Correlation Feature Selection (CFS) and Information Gain (IG) for the dimensionality reduction. The findings show a SE=93.17 %, SP=84.32 % and ACC=85.9 % when joining MP+LPC+MFCC features set with an AUC=0.969 showing that these features are promising to be used in heart sounds anomaly detection schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.