Abstract
IntroductionThe biomechanical effects of the interaction between titanium plates and screws and the fractured mandible are not well known. The mathematical models that have been developed to date show limitations and the experimental studies fail in reproducing muscle forces and internal stress distributions in the bone-implant interface with the mandibular structure. Material and methodsIn the present study we use a static simulator of the masticatory system to show, in epoxy resin mandibular models, by means of 3D (three-dimensional) photoelasticity, the stress distribution using different osteosynthesis methods in mandibular body fractures. ResultsThe results showed that the simulator and 3D photoelasticity were useful for studying interactions between bone and osteosynthesis materials. The “Lock” system displayed the most favourable stress distribution in the epoxy resin mandible. Conclusions3D photoelasticity in epoxy resin models is a useful method to evaluate stress distribution for biomechanical studies. In terms of mandibular osteosynthesis, “lock” plates show the most favourable stress distribution due to being less aggressive to the bone.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.