Abstract

Deligne's conjecture that $\ell$-adic sheaves on normal schemes over a finite field admit $\ell'$-companions was proved by L. Lafforgue in the case of curves and by Drinfeld in the case of smooth schemes. In this paper, we extend Drinfeld's theorem to smooth Artin stacks and deduce Deligne's conjecture for coarse moduli spaces of smooth Artin stacks. We also extend related theorems on Frobenius eigenvalues and traces to Artin stacks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.