Abstract
AbstractLet $p\gt 2$ be prime, and let $F$ be a totally real field in which $p$ is unramified. We give a sufficient criterion for a $\mathrm{mod} \hspace{0.167em} p$ Galois representation to arise from a $\mathrm{mod} \hspace{0.167em} p$ Hilbert modular form of parallel weight one, by proving a ‘companion forms’ theorem in this case. The techniques used are a mixture of modularity lifting theorems and geometric methods. As an application, we show that Serre’s conjecture for $F$ implies Artin’s conjecture for totally odd two-dimensional representations over $F$.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.