Abstract

We demonstrate a mitigation of fiber nonlinearity based on μ-law companding transform in coherent optical OFDM transmissions. High peak-to-average power ratio (PAPR) increases fiber nonlinear impairments caused by the Kerr effect in optical fiber. The μ-law companding modifies amplitude profile of OFDM signal with time domain signal processing, which reduces high PAPR of OFDM signal. The effects of companding parameter on noise enhancement and PAPR variation are presented. The impacts of companding transform on system performances are evaluated in a single polarization system as well as polarization multiplexed system. The resolution of analog-to-digital converter (ADC), dispersion map of transmission link, and launch power tolerance are also considered. The results of bit-error-rate (BER) measurements show that the μ-law companding improves OSNR margin over 5.5 dB after transmission of 1,040 km over SMF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.