Abstract

By the use of the extended homogenous balance method, the Bäcklund transformation for a (2+1)-dimensional integrable model, the(2+1)-dimensional Nizhnik–Novikov–Veselov (NNV) equation, is obtained, and then the NNV equation is transformed into three equations of linear, bilinear, and tri-linear forms, respectively. From the above three equations, a rather general variable separation solution of the model is obtained. Three novel class localized structures of the model are founded by the entrance of two variable-separated arbitrary functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.