Abstract
We consider the compactness of derivations from commutative Banach algebras into their dual modules. We show that if there are no compact derivations from a commutative Banach algebra, $A$, into its dual module, then there are no compact derivations from $A$ into any symmetric $A$-bimodule; we also prove analogous results for weakly compact derivations and for bounded derivations of finite rank. We then characterise the compact derivations from the convolution algebra $\ell^1(\Z_+)$ to its dual. Finally, we give an example (due to J. F. Feinstein) of a non-compact, bounded derivation from a uniform algebra $A$ into a symmetric $A$-bimodule.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.