Abstract

In this paper, the uniaxial cold compaction process of metal nano-powders is numerically analyzed through the Molecular Dynamics (MD) method. The nano-powders consist of nickel and aluminum nano-particles in the pure and mixed forms with distinctive contributions. The numerical simulation is performed using the different number of nano-particles, mixing ratios of Ni and Al nano-particles, compaction velocities, and ambient temperatures in the canonical ensemble until the full-dense condition is achieved. In the MD analysis, the inter-atomic interaction between metal nano-particles is modeled by the many-body EAM potential, and the interaction between frictionless rigid die-walls and metal nano-particles is modeled by the pairwise Lennard-Jones inter-atomic potential. The mechanical behavior of metal nano-powders under the compaction process is numerically studied by plotting the relative density–pressure, mean stress-strain, and material characteristics–strain curves. Moreover, the nano-powder behavior is visualized by means of the centro-symmetry contour at various stages of the forming process. Finally, the evolution of top-punch velocity on the final stage of compaction process is studied by plotting the compaction pressure against the total energy at various compaction velocities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.