Abstract

A one-head-two-tail cationic surfactant, Dilauryldimethylammonium bromide (DDAB) has shown a great extent of calf thymus DNA (ct-DNA) compaction being adsorbed on the surfaces of negatively charged SiO2 nanoparticles (NPs). DDAB molecules show high adsorption efficiency and induce many positive surface charges per-unit surface area of the SiO2 NPs compared to cationic Gemini (12-6-12) and conventional (DTAB) surfactants in an aqueous medium at pH 7.4, as evident from zeta potential and EDAX data. Transmission electron microscopy and field emission scanning electron microscopy images, along with ethidium bromide exclusion assay and DLS data support the compaction of ct-DNA. Fluorescence microscopic images show that in the presence of SiO2 NPs, DDAB can perform 50% compaction of ct-DNA at a concentration ∼58% and ∼99% lower than that of 12-6-12 and DTAB, respectively. Better ct-DNA compaction by DDAB is evident compared to other Gemini surfactants (12-4-12 and 12-8-12) as well reported before. Time-correlated single photon counting fluorescence intensity decay measurements of a probe DAPI in ct-DNA have revealed the average lifetime value that is decreased by ∼61% at 2.5 μM of DDAB in the presence of SiO2 NPs as compared to a decrease by only ∼29% in its absence, supporting NPs-induced stronger surfactant binding with ct-DNA. Fluorescence lifetime data have also demonstrated the crowding effect of NPs. At 2.5 μM of DDAB, both fast and slow rotational relaxation components of DAPI contribute almost equally to depolarization with the absence of NPs; however, with the presence of NPs, ∼96% weightage of the anisotropy decay is for the fast component. The present DDAB-SiO2 NPs combination has proved to be an excellent gene delivery system based on the cell viability in the mouse mammary gland adenocarcinoma cells (4T1) and human embryonic kidney (HEK) 293 cell lines, and in vitro and in vivo studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call