Abstract
PurposeThe purpose of this paper is to investigate the evolution of the permeability of spherical packing during cold compaction by pore-scale modeling.Design/methodology/approachThe discrete element method (DEM) is used to generate spherical packing structure under different compressive pressures and the Lattice Boltzmann method (LBM) is adopted to calculate the permeability of each spherical assembly.FindingsIt is found that the decrease of the porosity is the main reason of the reduction in permeability in the initial compression stage, but its influence becomes insufficient in the late compression stages. Besides, two empirical formulas are obtained, which describe the relation between the permeability and the equivalent mean diameter and the variation of normalized permeability with compressive pressure, respectively.Research limitations/implicationsIn this study, the authors study the spherical particles and ignore the non-spherical effects. Besides, the classical contact model, the linear-spring-damping model, is used in DEM, so the plastic deformation cannot be considered.Originality/valueThe DEM and the LBM are well combined to study the compaction effects on permeability of spherical packing. Two simple expressions of the spherical packing structure with uniform diameter distribution are given for the first time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.