Abstract

Given a discrete quantum group A we construct a certain Hopf *-algebra AP which is a unital *-subalgebra of the multiplier algebra of A. The structure maps for AP are inherited from M(A) and thus the construction yields a compactification of A which is analogous to the Bohr compactification of a locally compact group. This algebra has the expected universal property with respect to homomorphisms from multiplier Hopf algebras of compact type (and is therefore unique). This provides an easy proof of the fact that for a discrete quantum group with an infinite dimensional algebra the multiplier algebra is never a Hopf algebra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.