Abstract

We improve the intuition and some ideas of G. D. Faulkner and M. C. Vipera presented in the article “Remainders of compactifications and their relation to a quotient lattice of the topology” [Proc. Amer. Math. Soc. 122 (1994)] in connection with the question about internal conditions for locally compact spaces X and Y under which βX/X ≅ βY/Y or, more generally, under which the remainders of compactifications of X belong to the collection of the remainders of compactifications of Y. We point out the reason why the quotient lattice of the topology considered by Faulkner and Vipera cannot lead to a satisfactory answer to the above question. We replace their lattice by the qoutient lattice of a new equivalence relation on a Wallman base in order to describe a method of constructing a Wallman-type compactification which allows us to deduce more complete solutions to the problems investigated by Faulkner and Vipera.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.