Abstract
It is well known that a Tychonoff (respectively, Hausdorff uniform) space is compact (resp., complete) iff it is absolutely closed, i.e., dense in no other such space; we shall sketch a proof of this to our purpose, which is: Given X X , we apply Zorn’s Lemma to obtain a space maximal with respect to the property of containing X X densely, thus compact or complete. For uniform spaces, the “maximal extension” is automatically the completion; for Tychonoff spaces, we must, and do, explicitly arrange things so that the “maximal extension” has the universal mapping property describing the Stone-Čech compactification. A variant of the construction yields the Hewitt realcompactification. A crucial point in the proofs is (of course) the exhibition of an upper bound for a chain; this is, in essence, a direct limit construction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.