Abstract
The tablet tensile strength ( T) of agglomerated mixtures of microcrystalline cellulose—Avicel PH 102 (MC), calcium carbonate (CC) and polyvinylpyrrolidone (Povidone, PVP), lubricated with magnesium stearate (MS), and formed under a compaction pressure ( P c) ranging up to 618 MPa has been determined. The compactibility was defined through: ln(− ln(1−T/T max ))= Slope× ln P c + Intercept . MC/CC mixtures added of an agglutinant, before and after lubrication, show an important positive effect on their tablet tensile strength compared to a lineal relationship. This positive effect becomes smaller with decreasing compaction pressures. By different mixing methods, the higher the mixing efficiency the higher the compactibility, following the order: spray-dried>wet massing>tumble mixing. The compactibility of MC/CC/PVP spray-dried mixtures with calcium carbonate content from 20 to 60% was equal to or greater than that of pure microcrystalline cellulose. After lubrication with 2% MS the compactibility decreased, only the mixture with the maximal tablet tensile strength attained the tensile strength of pure microcrystalline cellulose. The presence of the binder, the lubricant and higher compaction pressures allow the accommodation of higher calcium carbonate proportions in the mixtures, at the maximal tablet tensile strength of the series. The lubricant decreases in a greater extent the compactibility of mixtures with a continuous phase of MC/PVP than that of CC/PVP. This is attributed to the plastic behavior of the MC/PVP continuous phase compared to a calcium carbonate continuous phase able to disrupt the Povidone and the possible lubricant coatings allowing a stronger interparticle interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.