Abstract

Full-depth reclamation is one of the most used rehabilitation methods for subbase courses in high-traffic roads. The use of both cement and bituminous binders as binding agents for reclaimed pavement materials can lead to mixtures having high bearing capacity and resistance to permanent deformation, avoiding premature cracking due to shrinkage. This article focuses on two main topics: compactability and thermal sensitivity of cement–bitumen-treated materials (CBTMs). The dosage of liquids in CBTMs is a key parameter in order to obtain an effective compaction. The volumetric characteristics and the optimum liquid content of CBTMs were studied by means of two compaction methods: Proctor and Shear Gyratory Compactor. The temperature susceptibility of CBTMs can be a valuable factor in both design and construction quality control. The influence of temperature on the stiffness modulus of CBTMs was investigated using two testing methods: indirect tensile stiffness modulus and ultrasonic pulse velocity (UPV). While ITSM provided reference modulus values at strain levels and rates typical of traffic loads, UPV was used to estimate Young's modulus at very low strain levels and high frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.