Abstract
The corrugated or scalar feedhorn has found many applications in millimeter wave and sub-millimeter wave systems due to its high beam symmetry, relatively low sidelobe levels and strong coupling to the fundamental mode Gaussian beam. However, for applications such as millimeter wave cosmology, space-based experiments, or even high performance imaging, there is a generic requirement to reduce the size of horns whilst maintaining very high levels of performance. In this paper we describe a general analytic methodology for the design of compact dual-profiled corrugated horns with extremely low sidelobe levels. We demonstrate that it is possible to achieve -50 dB sidelobe levels, over wide bandwidths with short horns, which we believe represents state-of-the-art performance. We also demonstrate experimentally a simple scalar design that operates over wide bandwidths and can achieve sidelobes of better than -40 dB, whilst maintaining a frequency independent phase center. This design methodology has been validated experimentally by the successful manufacture and characterization of feedhorns at 94 GHz and 340 GHz for both radar and quasi-optical instrumentation applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.