Abstract

A novel ultra-wideband (UWB) bandpass filter (BPF) using a broadside-coupled hairpin structure and multilayer organic liquid crystal polymer (LCP) technology is presented. To suppress stopband harmonic response, folded stepped impedance structures were adopted as hairpin resonators in the design. The proposed filter has been investigated numerically and experimentally. Multilayer LCP technology was used to implement designed UWB BPF. Good agreement between simulated and measured results of the proposed filter was observed. They show that the fabricated UWB BPF has a good performance, including a small insertion loss, a flat group delay with a variation within 0.1 ns in most of its passband, a wide stopband from 11.0 20.0 GHz with a high rejection level up to 20.0 dB, and a very compact size of 9.8 times 7.5 mm (0.36 lambdag times 0.27 lambdag, where lambdag is the guided wavelength of 50 Omega microstrip line at 6.85 GHz).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.