Abstract

The extraordinary transmission in density-near-zero (DNZ) acoustic metamaterials (AMs) provides possibilities to manipulate acoustic signals with extremely large effective phase velocity and wavelength. Here, we report compact transformable acoustic logic gates with a subwavelength size as small as 0.82λ based on DNZ AMs. The basic acoustic logic gates, composed of a tri-port structure filled with space-coiling DNZ AMs, enable precise direct linear interference of input signals with considerably small phase lag and wavefront distortion. We demonstrate both theoretically and experimentally the basic Boolean logic operations such as OR, AND, XOR, and NOT with wide operational frequency ranges and controllability, by adjusting the phase difference between two input signals. More complex logic calculus, such as “I1 + I2 × I3,” are also realized by cascading of the basic logic gates. Our proposal provides diverse routes to construct devices for acoustic signal computing and manipulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call