Abstract

AbstractFor any rotation-invariant positive regular Borel measure ν on the closed unit ball $\overline{\mathbb{B}}_n$ whose support contains the unit sphere $\mathbb{S}_n$, let L2a be the closure in L2 = L2($\overline{\mathbb{B}}_n, dν) of all analytic polynomials. For a bounded Borel function f on $\overline{\mathbb{B}}_n$, the Toeplitz operator Tf is defined by Tf(ϕ) = P(fϕ) for ϕ ∈ L2a, where P is the orthogonal projection from L2 onto L2a. We show that if f is continuous on $\overline{\mathbb{B}}_n$, then Tf is compact if and only if f(z) = 0 for all z on the unit sphere. This is well known when L2a is replaced by the classical Bergman or Hardy space.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.