Abstract
A 135 nm gate length-based low noise enhancement mode N-polar double deck T-shaped gate Gallium Nitride (GaN) Metal Oxide Semiconductor (MOS)-high electron mobility transistor with double insulating layer of high- k dielectrics ZrO 2 /HfO 2 is proposed. The device exhibits maximum transconductance of 0.55 S/mm, maximum drain current density of 1.4 A/mm and minimum noise figure (NF min ) of 0.72 dB at 20 GHz. A compact model for Two Dimensional Electron Gas (2DEG) density is developed by explicit solution of surface potential and Fermi level by considering first two sub-bands of triangular quantum well without using any numerical methods. Based on the surface potential drain current, intrinsic charge, gate capacitance, small signal and thermal noise models are developed. To validate the proposed numerical model, the results are calibrated with TCAD device simulation results and available experimental data from literatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.