Abstract

There is a need to establish a simple and accurate measurement technique for determining the transmission loss of sample materials for helmets over a frequency range of 300–3 kHz. Standard methods, e.g., ASTM E 90-02, for measuring transmission loss of building materials and structures, based on adjacent reverberation chambers, are too costly and impractical. A 1.22-m-long double-wall tube, packed with Owens Corning R13 insulation, has been fabricated using QUIK-TUBETM cardboard concrete forms of 200 and 300 mm diameters. A circular sample of material, also 300 mm in diameter, is placed on the end of the tube and subjected to an external sound field. Transmission loss is established by external and internal microphones. This paper describes the measurement and analysis procedures and examines the associated variables and error terms. Results are presented for 16 material samples with surface weights covering a range from 0.3 to 14.7 kg/m2 and compared with analytical predictions including mass law models. The acoustical characteristics of commercial helmet materials and liners are evaluated in the context of hearing protection systems. The transmission loss measurement procedure has the potential for meeting standardization objectives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.