Abstract
We consider two natural topologies on the space S(X×Y,Z) of all separately continuous functions defined on the product of two topological spaces X and Y and ranged into a topological or metric space Z. These topologies are the cross-open topology and the cross-uniform topology. We show that these topologies coincides if X and Y are pseudocompacts and Z is a metric space. We prove that a compact space K embeds into S(X×Y,Z) for infinite compacts X, Y and a metrizable space Z⊇R if and only if the weight of K is less than the sharp cellularity of both spaces X and Y.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.