Abstract

Research on the electroperturbation effects of ultrashort high field pulses in cancer cells requires subnanosecond rise time, high voltage pulses delivered to low impedance biological loads. Here we present a compact solid-state pulse generator developed for this application. The pulse is generated by switching a chain of avalanche transistors configured as a tapered transmission line from high voltage to ground. The system features a built in 1400:1 capacitively compensated resistive voltage divider. The divider, with a 3 dB point at 910 MHz, overcomes challenges in the direct measurement of the high frequency components of the output pulse. The generator is capable of producing a 0.8 ns rise time, 1.3 ns wide, 1.1 kV pulse into a 50 Omega load at a maximum repetition rate of 200 kHz. Techniques to implement physical layouting strategies to achieve subnanosecond rise times are outlined. Problems faced in integrating the subnanosecond pulse generator with a biological load are discussed. This pulse generator will be used in experiments aimed at electromanipulation of intracellular biomolecular structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call