Abstract

Abstract We have obtained spectroscopic redshifts of colour-selected point sources in four wide area VLT-FLAMES (Very Large Telescope-Fibre Large Array Multi Element Spectrograph) fields around the Fornax cluster giant elliptical galaxy NGC 1399, identifying as cluster members 27 previously unknown faint compact stellar systems (CSS), and improving redshift accuracy for 23 previously catalogued CSS. By amalgamating our results with CSS from previous 2dF observations and excluding CSS dynamically associated with prominent (non-dwarf) galaxies surrounding NGC 1399, we have isolated 80 ‘unbound’ systems that are either part of NGC 1399's globular cluster (GC) system or intracluster GCs. For these unbound systems, we find (i) they are mostly located off the main stellar locus in colour–colour space; (ii) their projected distribution about NGC 1399 is anisotropic, following the Fornax cluster galaxy distribution, and there is weak evidence for group rotation about NGC 1399; (iii) their completeness-adjusted radial surface density profile has a slope similar to that of NGC 1399's inner GC system; (iv) their mean heliocentric recessional velocity is between that of NGC 1399's inner GCs and that of the surrounding dwarf galaxies, but their velocity dispersion is significantly lower; (v) bright CSS (MV < −11) are slightly redder than the fainter systems, suggesting they have higher metallicity; (vi) CSS show no significant trend in g′−i′ colour index with radial distance from NGC 1399.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.