Abstract

The orbital angular momentum (OAM) of light has recently attracted a growing interest as a new degree of freedom in order to increase the information capacity of today's optical networks, both for free-space and optical fiber transmission. Here we present our work of design, fabrication, and optical characterization of diffractive optical elements for compact OAM mode division demultiplexing based on optical transformations. Samples have been fabricated with 3D high-resolution electron beam lithography on a polymethylmethacrylate resist layer spun over a glass substrate. Their high compactness and efficiency make these optical devices promising for integration into next-generation platforms for OAM modes processing in telecom applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call