Abstract

Compact computational structure-function relations are needed to examine energy transfer between confined fields and carrier dynamics at heterostructure interfaces. This work used discrete dipole approximations to analyze quasiparticle excitation and dephasing at interfaces between metals and van der Waals materials. Simulations were compared with scanning transmission electron microscopy (STEM) for energy electron loss spectroscopy (EELS) at sub-nanometer resolution and femtosecond timescale. Artifacts like direct electron-hole pair generation were avoided. Comparing simulation with experiment distinguished quasiparticle energy transfer to hot carriers at the interface, and supported development of structure-function relations between interface morphology and emergent discrete and hybrid modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call