Abstract

We present the first universal compact routing algorithm with maximum stretch bounded by 3 that uses sublinear space at every vertex. The algorithm uses local routing tables of size O(n2/3log4/3n) and achieves paths that are most 3 times the length of the shortest path distances for all nodes in an arbitrary weighted undirected network. This answers an open question of Gavoille and Gengler who showed that any universal compact routing algorithm with maximum stretch strictly less than 3 must use Ω(n) local space at some vertex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.