Abstract

The Fourier holographic projection method is compact and computationally fast. However, since the magnification of the displayed image increases with the diffraction distance, this method cannot be used directly to display multi-plane three-dimensional (3D) scenes. We propose a holographic 3D projection method of Fourier holograms by scaling compensation to offset the magnification during optical reconstruction. To achieve a compact system, the proposed method is also used to reconstruct 3D virtual images with Fourier holograms. Different from traditional Fourier holographic displays, images are reconstructed behind a spatial light modulator (SLM) so that the observation position can be placed close to the SLM. The effectiveness of the method and the flexibility of combining it with other methods are confirmed by simulations and experiments. Therefore, our method could have potential applications in the augmented reality (AR) and virtual reality (VR) fields.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.