Abstract

Based mainly on the distributed Bragg reflector (DBR) short linear cavity with a 1.6-cm-long heavily Tm3+-doped germanate glass fiber and semiconductor saturable absorber mirror (SESAM), a compact passively Q-switched single-frequency fiber laser at around 1950 nm is demonstrated experimentally. By comparing pulse characters of Q-switched operations fulfilled via SESAMs with different parameters, a stable output pulse is optimized to deliver a maximum average power of 22.2 mW, a peak power of 0.67 W, and an optical signal-to-noise ratio over 61 dB. Moreover, the repetition rate of the output pulse can be tuned from 92 to 520 kHz with a narrowest pulse width of 64 ns. To the best of our knowledge, this is the first time a 2.0 µm passively Q-switched single-frequency DBR Tm3+-doped fiber laser has been realized, and it shows great potential application in remote sensing, biomedical science, and nonlinear optics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call