Abstract

An optical interconnection plate was developed in order to achieve a compact and cost-effective interconnection module for an optical data link between chips on printed circuit boards. On the silica substrate, transmission lines and solder bumps are formed on the top surface of the substrate, and polymer waveguide array with 45/spl deg/ mirror planes is formed on the back side. This optical interconnection plate technique makes the alignment procedure quite simple and economical, because all the alignment steps between the optical components can be achieved in wafer processes and a high accuracy flip-chip bonding technique. We confirmed the sufficiently high coupling efficiency and low optical crosstalk using the simplified experimental setup. Flip-chip bonding of the vertical-cavity surface-emitting laser and photodiode arrays on the top surface of the optical interconnection plate was performed using indium bumps in order to avoid thermal damage of the polymer waveguide. The fully packaged optical interconnection plate showed an optical data link at rates of 455 Mb/s. Improvement of the mirror surface roughness and the mirror angle accuracy could lead to an optical link at higher rates. In addition, the interconnection system can be easily constructed by inserting the optical interconnection plate between the processing chips or data lines requiring optical links.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.