Abstract
We propose a Vernier effect-based sensor for temperature and salinity measurements. This sensor utilizes the correlation speckle pattern generated by spatial multimode interference and has undergone testing to validate its effectiveness. The speckle demodulation method is used to solve the problem of inconsistent envelope measurement when tracking with different upper and lower envelopes. The device consists of two Fabry Perot interferometers (FPIs) created by connecting hole core fiber (HCF) and erbium-doped fiber (EDF) in series. The speckle image produced by the interferometers is analyzed using the Zero means normalized cross-correlation (ZNCC) technique. The ZNCC value demonstrates a linear relationship with salinity and temperature, allowing for the measurement of these parameters. The sensor exhibits a temperature detection sensitivity of -0.0224 /°C and a salinity detection sensitivity of -0.0439/%. The sensor offers several advantageous features, including its compact size, low-cost manufacturing, high sensitivity, stability, and convenient reflection measurements. These characteristics make it a valuable tool for various applications. The proposed Vernier effect-based temperature and salinity sensor shows great potential for simultaneous monitoring and measurement of temperature and salinity in environments such as marine settings or industrial processes where accurate control of these parameters is crucial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.