Abstract

We analyse in all generality beyond Horndeski theories of shift symmetry in a static and spherically symmetric spacetime. By introducing four auxiliary functions, we write the field equations in a particularly compact form. We show that assuming additionally parity symmetry renders the system directly integrable giving multiple families of black-hole solutions. These have typically an asymptotically-flat Reissner-Nordstrom behaviour, and emerge in the presence of a canonical kinetic term for the scalar field. In the absence of parity symmetry, we present a general method which allows us to integrate the field equations by choosing the form of only one coupling function and an auxiliary quantity. This method leads to asymptotically flat and AdS black hole solutions with differing properties. We finally discuss disformal transformations within this context as a means of obtaining wormhole and black hole solutions in different theories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call