Abstract

To simplify a nuclear magnetic resonance (NMR) spectra of the targeted molecules, spin–spin decoupling and selective isotope substitution are two distinct approaches. A third one is to increase the applied magnetic field to increase the frequency dispersion of the chemical shift range. While this is a viable option for NMR spectrometers with superconducting magnets, the new generation of compact NMR spectrometers employs permanent magnets with limited variety in field strengths between one and two Tesla. The low-frequency dispersion at these field strengths gives rise to higher order spectra more frequently than at high field. These low-field spectra can be simplified using lanthanide shift reagents, which form complexes with the substrate molecule and increase the frequency dispersion. In this work, the use of lanthanide shift reagents is demonstrated by means of one-dimensional 1H and 19F as well as two-dimensional 19F-19F COSY experiments using a new-generation compact NMR spectrometer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.