Abstract

Neutron spectrometry is a tool for obtaining important information on the fuel ion composition, velocity distribution and temperature of fusion plasmas. A compact NE213 liquid scintillator, fully characterized at Physikalisch-Technische Bundesanstalt, was installed and operated at the Joint European Torus (JET) during two experimental campaigns (C8-2002 and trace tritium experiment-TTE 2003). The results show that this system can operate in a real fusion experiment as a neutron (1.5 MeV<En<20 MeV) spectrometer with good energy resolution (ΔE/E<4% at En=2.5 MeV and ΔE/E<2% at En=14 MeV). First measurements performed under different plasma scenarios, including trace tritium experiments, are presented. The analysis of the pulse height data was carried out using a newly developed method based on maximum entropy unfolding. The results indicate that this efficient, inexpensive, and compact scintillator is suitable for use as a broadband spectrometer in large fusion devices (JET and the International Thermonuclear Experimental Reactor).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.