Abstract
The short-circuit protection equipment of dc circuit breaker (DCCB) is important for the dc grid. Also, the series-connected power devices are usually employed in the solid-state circuit breaker (SSCB) or hybrid circuit breaker (HCB) to meet the clamping voltage requirement. A simple passive gate driver and power supply solution is a critical component to drive the circuit breakers more cost-effective and reliable. This article proposed a novel compact MV-insulated transformer-coupled gate driver method, which combines the auxiliary power and gate signal together. The proposed high-frequency-modulated multilevel transformer voltage enables both the simultaneous and the staged turn-off schemes. Besides, the cascade high- and low-voltage transformer structures simplify the insulation design and demonstrate better scalability. The common-mode current could be suppressed as well using this structure. The design example of a compact 2-MHz high-voltage planar transformer with >13-kV partial-discharge-free insulation capability is illustrated. Finally, the simulation and experimental results are also given to demonstrate the feasibility of the proposed gate driver method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Emerging and Selected Topics in Power Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.