Abstract

In spite of the apparent simplicity of the system under study, compact modeling of complementary resistive switching (CRS) devices, i.e., two antiserially connected memristive structures, is by no means straightforward. This requires a deep understanding of the voltage drops occurring across the circuit elements and correct treatment of the so-called snapback (SB) effect typical of the breakdown process of a thin dielectric film in an MIS or a MIM structure. The SB effect fundamentally consists in a sudden reduction of the device resistance caused by the formation of a filamentary path spanning the insulator. Beyond this point, the filament widens keeping the voltage drop across its extremes constant. The consequence of disregarding this effect is clearly distinguishable in the simulated curves: progressive openings of the on-state windows for both positive and negative voltages instead of abrupt ones. In this paper, a modification is introduced in the original memdiode model for memristive devices in order to account for this remarkable feature. Ta2O5-based CRS devices are considered to demonstrate the suitability of our approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.