Abstract

The lightweight with flexibility and low-cost processing engineered the rapid growth of organic field-effect transistors (OFET) in the past three decades. Suitable compact models and parameter extraction methods are being developed to further the use of OFETs in integrated circuits, where stimulations are required to optimize the device performance. To simplify the parameter extraction, metaheuristic approaches are usually made, which otherwise is a cumbersome process. Following these, here investigations are made with the help of such a compact model to extract the operational parameters of P3HT (poly (3-hexylthiophene) based OFETs with electrolytic gate dielectrics using the genetic algorithm (GA) method. The result show that the compact model that was essentially developed in line with the successful models for inorganic material based FETs, can be used as an excellent framework for simulating low voltage OFETs made with both low and high mobility organic semiconductors. Mobility and threshold voltage calculated from the extracted parameters using GA for the two devices having mobility value differences of more than four orders are found to be nicely fitting with the experimental values. These results assume significance to the organic electronic industry as this facilitates the real-time circuit application of OFETs. KEYWORDS: Modeling, Low voltage OFET, Genetic algorithm, Ionic liquid, P3HT

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.