Abstract

This paper presents design and simulation of a low-cost 5G Millimeter-wave planar antenna with defected ground structure operating in the Ka-band portions of millimeter-wave. The antenna resonates at multiple frequencies of Ka-band especially at 27.80 GHz, 30.86 GHz and 33.74 GHz with a return loss of −21.41 dB, −24.03 dB and −22.27 dB, respectively, and has an impedance bandwidth of 53.5%. The presented antenna has been designed on a low cost FR4 substrate with a dielectric K value of 4.4 and a dissipation value of 0.004. The overall profile of the designed structure is 30 × 40 × 0.8 mm3. The antenna proposed is a compact structure with a peak gain achievement of 3.79 dBi and suits best for the employment with 5G mobile devices and gadgets. Other parameters such as radiation pattern, VSWR, polar plot and surface current density have also been discussed. The well performance of the presented antenna with reference to the return loss (S11), peak gain and associated radiation pattern makes it a sterling and compact design antenna for use in the 5G Millimeter-Wave mobile devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.