Abstract

In this paper, we have designed and realized a two-stage low-noise power amplifier (LNPA) with resistive feedback network targeting for Ka-band compact RF front-end applications. Featuring the characteristics of both low noise and high power at the same time, the LNPA is expected to be a possible one-chip replacement of power and low noise amplifiers integrated in a conventional transceiver/receiver (T/R) module. Such configuration features size compactness while reduces implementation complexity which is of crucial importance for integration in antenna arrays with large number of antenna elements. Implemented in 0.15-μm GaAs pseudomorphic high electron mobility transistor (pHEMT) technology, the LNPA, operating at 36–40 GHz, exhibits a peak gain of 15.96 dB, a minimum noise figure of 2.88 dB, a power consumption of 152 mW and a measured 1-dB compression output power of 14.92 dBm at 38 GHz, respectively. The LNPA also featured a very good linearity performance with a measured output third-order interception point (IP3) of 22.22 dBm at 38 GHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.