Abstract
Less efficiency and gain is achieved by existence of aperture blocking phenomena in cassegrain antenna caused by the presence of subreflector or antenna feed. Also, length of feed cables causes delay which is another undesirable problem in antennas, since errors and less precision of detecting targets are created. To overcome these problems, low weight and compact optimized polarization-rotation monopulse cassegrain antenna is designed in this paper. The goal of our proposed rotating antenna is achievement of sum and difference patterns for target tracking in monopulse radar. In our work, left part of hyperbolic subreflector instead of right one has been used for reducing size of the antenna. The antenna is fabricated by grid wires instead of solid sheet metal reflectors and with composite technology for decreasing its weight. Width and volume of the antenna reduce by about 50% in comparison to other reflector antennas. This antenna has been simulated and manufactured in X-band and simulation data are in good agreement with measured ones. The antenna has the average gain of 35 dB from 8.5 up to 9.5 GHz. Also the antenna feed bandwidth is more than 50% and the antenna has efficiency of about 50% from 8 up to 10 GHz.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.