Abstract
First, we shall prove that a compact connected oriented locally conformally flat n-dimensional Riemannian manifold with constant scalar curvature is isometric to a space form or a Riemannian product Sn−1(c) × S1 if its Ricci curvature is nonnegative. Second, we shall give a topological classification of compact connected oriented locally conformally flat n-dimensional Riemannian manifolds with nonnegative scalar curvature r if the following inequality is satisfied: [sum ]i,jR2ij [les ] r2/(n−1), where [sum ]i,jR2ij is the squared norm of the Ricci curvature tensor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.